Correction(pp.142-144) to

"Proof of $\sin x<x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}, x \in(0, \pi / 2)$ "
Must be:

- Proof of $\sin x<x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}, x \in(0, \pi / 2)$

Let $x \in(0, \pi / 2)$. Since $\sin x<x$ and $\cos x<1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}$ then

$$
\sin x=2 \sin \frac{x}{2} \cos \frac{x}{2}<2 \cdot \frac{x}{2}\left(1-\frac{(x / 2)^{2}}{2}+\frac{(x / 2)^{4}}{24}\right)=x-\frac{x^{3}}{8}+\frac{x^{5}}{384}
$$

So, we have

$$
\begin{equation*}
\sin x<x-\frac{x^{3}}{8}+\frac{x^{5}}{384}, \quad x \in(0, \pi / 2) \tag{6}
\end{equation*}
$$

Suppose now that for some positive $a<\frac{1}{3!}=\frac{1}{6}$ and positive
$b<\frac{1}{5!}=\frac{1}{120}$ the inequality $\sin x \leq x-a x^{3}+b x^{5}$ holds for every $x \in(0, \pi / 2)$.
Then

$$
\begin{gathered}
\sin x=2 \sin \frac{x}{2} \cos \frac{x}{2}<2\left(\frac{x}{2}-a\left(\frac{x}{2}\right)^{3}+b\left(\frac{x}{2}\right)^{5}\right)\left(1-\frac{1}{2}\left(\frac{x}{2}\right)^{2}+\frac{1}{24}\left(\frac{x}{2}\right)^{4}\right)= \\
x-\left(\frac{a}{4}+\frac{1}{8}\right) x^{3}+\left(\frac{a}{32}+\frac{b}{16}+\frac{1}{384}\right) x^{5}-\left(\frac{x}{2}\right)^{7}\left(\frac{1}{12} a+b\left(1-\frac{x^{2}}{48}\right)\right)< \\
x-\left(\frac{a}{4}+\frac{1}{8}\right) x^{3}+\left(\frac{a}{32}+\frac{b}{16}+\frac{1}{384}\right) x^{5}
\end{gathered}
$$

because for for any $x \in(0, \pi / 2)$ holds inequality $\frac{1}{12} a+b\left(1-\frac{x^{2}}{48}\right)>0$.
Thus, the non-strict inequality $\sin x \leq x-a x^{3}+b x^{5}$ (which we know to be true when $a=1 / 8$ and $b=1 / 384$) yields the strict inequality

$$
\begin{equation*}
\sin x<x-\left(\frac{a}{4}+\frac{1}{8}\right) x^{3}+\left(\frac{a}{32}+\frac{b}{16}+\frac{1}{384}\right) x^{5} \tag{7}
\end{equation*}
$$

If we write $a=\frac{1}{6}-p, b=\frac{1}{120}-q$ and denote $\sin x-x+\frac{x^{3}}{6}-\frac{x^{5}}{120}$ via $r(x)$ then
$\sin x \leq x-a x^{3}+b x^{5} \Longleftrightarrow \sin x \leq x-\left(\frac{1}{6}-p\right) x^{3}+\left(\frac{1}{120}-q\right) x^{5} \Longleftrightarrow$
$\sin x-x+\frac{x^{3}}{6}-\frac{x^{5}}{120} \leq p x^{3}-q x^{5} \Longleftrightarrow r(x) \leq p x^{3}-q x^{5}$, where $p, q>0$
and since
$\frac{a}{4}+\frac{1}{8}=\frac{1}{6}-\frac{p}{4}, \frac{a}{32}+\frac{b}{16}+\frac{1}{384}=$
$\frac{1}{32}\left(\frac{1}{6}-p\right)+\frac{1}{16}\left(\frac{1}{120}-q\right)+\frac{1}{384}=\frac{1}{120}-\frac{p}{32}-\frac{q}{16}$
we obtain $(7) \Longleftrightarrow \sin x<x-\left(\frac{1}{6}-\frac{p}{4}\right) x^{3}+\left(\frac{1}{120}-\frac{p}{32}-\frac{q}{16}\right) x^{5} \Longleftrightarrow$
$r(x)<\frac{p}{4} x^{3}-\left(\frac{p}{32}+\frac{q}{16}\right) x^{5}$.
So, we have shown that the inequality $r(x)<p x^{3}-q x^{5}$ and even $r(x) \leq p x^{3}-q x^{5}$ implies the inequality

$$
r(x)<\frac{p}{4} x^{3}-\left(\frac{p}{32}+\frac{q}{16}\right) x^{5}
$$

Due to inequality (6) with $a=\frac{1}{8}$ and $b=\frac{1}{384}$ the initial value of p is $\frac{1}{6}-\frac{1}{8}=\frac{1}{24}$ and the initial value of q is $\frac{1}{120}-\frac{1}{384}=\frac{11}{1920}$. Let sequences $\left(p_{n}\right)_{n \geq 1}$ and $\left(q_{n}\right)_{n \geq 1}$ be as follows

$$
p_{n+1}=\frac{p_{n}}{4}, q_{n+1}=\frac{p_{n}}{32}+\frac{q_{n}}{16}, n \in \mathbb{N}, p_{1}=\frac{1}{24}, q_{1}=\frac{11}{1920} .
$$

Thus, we can see that for any $x \in(0, \pi / 2)$ holds inequality $r(x)<p_{n} x^{3}-q_{n} x^{5}<p_{n} x^{3}$ (because $q_{n} x^{5}>0$ for any $n \in \mathbb{N}$) Noting that $p_{n}=\frac{1}{24} \cdot \frac{1}{4^{n-1}}=\frac{1}{3 \cdot 2^{2 n+1}}, n \in \mathbb{N}$ we obtain inequality

$$
r(x)<p_{n} x^{3}=\frac{x^{3}}{3 \cdot 2^{2 n+1}}, n \in \mathbb{N}
$$

Since $\frac{1}{3 \cdot 2^{2 n+1}}$ can be arbitrary small with increasing n then $\frac{x^{3}}{3 \cdot 2^{2 n+1}}<\frac{(\pi / 2)^{3}}{6 \cdot 4^{n}}$ can be arbitrary small with increasing n as well then, applying Proposition to $f(x)=r(x)$ we obtain inequality $r(x) \leq 0, x \in(0, \pi / 2)$ which equivalent to inequality $\sin x \leq x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}, x \in(0, \pi / 2)$ and, since $\sin x \leq x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}$ yields $\sin x<x-\left(\frac{1}{6} \cdot \frac{1}{4}+\frac{1}{8}\right) x^{3}+\left(\frac{1}{6} \cdot \frac{1}{32}+\frac{1}{120} \cdot \frac{1}{16}+\frac{1}{384}\right) x^{5}=$

$$
x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}
$$

we finally get strict inequality $\sin x<x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}$.

